Aufgaben zur Z-Diode / Lösungen

1.) Für eine Messschaltung wird eine konstante Gleichspannung von U=5.0V benötigt. Die Stromaufnahme der Schaltung kann zwischen $I_L=(0...100)mA$ schwanken. Für die Versorgung der Messschaltung steht eine unstabilisierte Gleichspannung von $U_E=(8...12)V$ zur Verfügung.

Zum Aufbau der Stabilisierungschaltung wird eine Leistungs-Z-Diode mit $U_{Z\ Nenn} = 5,1V$, $P_{Vmax} = 1W$ (ohne Kühlblech) bzw. $P_{Vmax} = 8W$ (mit Kühlblech) verwendet. Aus einer Anzahl von Z-Dioden wird ein Exemplar mit $U_{Z} = 5,0V$ durch Ausmessen ausgewählt.

Dimensionieren Sie den erforderlichen $\mathbf{R}_{\mathbf{V}}$. Geben Sie seinen Nennwert aus der Reihe E12 und seine erforderliche Belastbarkeit $\mathbf{P}_{\mathbf{R}_{\mathbf{V}}}$ an.

Berechnen Sie dazu vorher aus den Werten für U_Z und P_{Vmax} der Z-Diode die Ströme I_{Zmax} ($P_{Vmax} = 1W$), I_{Zmax} ($P_{Vmax} = 8W$) und I_{Zmin} ($P_{Vmax} = 1W$).

 I_{Zmin} ($P_{Vmax} = 8W$) kann mit I_{Zmin} ($P_{Vmax} = 1W$) gleichgesetzt werden. Begründen Sie diese Tatsache!

Versuchen Sie bei der Berechnung der Stabilisierungsschaltung zuerst mit der Z-Diode ohne Kühlblech auszukommen.

Skizzieren Sie die Schaltung und tragen Sie die Größen und Zählpfeile ein.

*** ACHTUNG: Lösung erfolgt innerhalb der Vorlesung. ***

2.) Dimensionieren Sie eine Spannungsstabilisierungsschaltung mit $U_E = (25...35)V$ und $I_L = (0...12)mA$. Geben Sie für R_V den Nennwert und die Belastbarkeit an.

Daten der Z-Diode: $U_{Z\ Nenn} = 10,0V$; $P_{Vmax} = 500mW$. Skizzieren Sie die Schaltung.

 $R_{Vmin} = 500~\Omega$, $R_{Vmax} = 880~\Omega$, $R_{Vgew.} = 680~\Omega$ E12 , $P_{VRv.} = 1{,}02~W$

3.) Dimensionieren Sie eine Spannungsstabilisierungsschaltung mit $U_E = (20...30)V$ und $I_L = (0...20)mA$. Geben Sie für R_V den Nennwert und die Belastbarkeit an.

Daten der Z-Diode: $U_{Z\ Nenn} = 7.5V$; $P_{Vmax} = 500mW$. Skizzieren Sie die Schaltung.

 $R_{Vmin} = 337, 5~\Omega$, $~R_{Vmax} = 468, 7~\Omega,~R_{Vgew.} = 390~\Omega~E12$, $~P_{VRv.} = 1,44~W$

Ende